
Predicting HIV Viral Body Load through Image Analysis

Junjiang Li Ben Maldonado Gabe Skidmore Zhuo Xu Darren Calovini

1 Introduction

The Human Immunodeficiency Virus (HIV) has been a
major global health problem for decades. As a result,
researchers working in HIV related fields have success-
fully developed some treatment methods. A commonly-
used therapy combines two nucleoside reverse transcrip-
tase inhibitors (NRTI) with a protease inhibitor (PI) [8].
When these inhibitors are absorbed into a cell infected
with the HIV virus, they can inhibit viral replication and
stop the virus from infecting other cells. The infection
process with or without therapy methods, such as the
aforementioned NRTI and PI therapy, can be simulated
by dividing treatment into discrete time steps and mod-
eling how states of those cells change. Simulations rely
on rule sets according to cellular automata (CA) to pro-
duce reliable cell states in later stages. CA are simula-
tion models commonly used to reliably model a large
number of cells and their interactions. Many researchers
apply CA to simulate the dynamics of HIV infection
[24]. However, simulations for these therapy methods
are computationally costly and take a long time to gen-
erate results[11]. The high demands of HIV CA models
render them impractical for many patients who would
otherwise benefit from them [6]. In addition, classical
machine learning methods for this problem focused on
features associated with the concentrations of different
cell types. In this paper, we attempt a new approach
to feature extraction from these CA models by generat-
ing images that reflect cell states at each time step from
a variety of HIV CA models and extract image features
from these images. Then, our regressors forecast the HIV
CA models’ end states by analyzing these image features
from several beginning time steps. These predictions are
very useful for further investigating the effectiveness of
therapy methods and predicting viral load in the body
over time, as it will reduce the time and computational
power necessary to test these therapies by cutting out a
large section of the simulation entirely.

In this paper, our goal is to utilize machine learning
techniques to predict cells’ state after 600 weeks of in-
fection and possibly multiple treatments (depending on
the model). This objective is addressed via the following
three aims.

1. Develop several machine learning regression mod-

els that can predict the cell states at week 600
based on extracted image features from the first 200
weeks.

2. Evaluate features from how many time steps can
form a solid forecast accuracy.

3. Evaluate the impact of extracted image features on
prediction results.

The organization of this paper is as follows. Section
2 provides a basic background on HIV, the process of
HIV simulation using cellular automaton, and basic im-
age feature extraction. Section 3 address our particular
methods of image extraction and subsequent regression.
Section 4 presents the results of our machine learning
models and the description of our regressors. Section 5
is the discussion of results. Section 6 is the conclusions
we reached from our findings.

2 Background

For this research, cellular automata (CA) reproduced the
effects of Human Immunodeficiency Virus (HIV) within
the human body. HIV’s basic mechanics will be explored
briefly in section 2.1, while cellular automata will be ex-
plored in section 2.2. There are five theoretical rulesets
for HIV modeling used in this paper: the dos Santos,
González, Moonchai, Precharattana, and Rana models,
all described in the aforementioned section 2.2. With
all five HIV models, image features collected at each
timestep until week 200 were used to predict the end
state of the models at week 600 using various regres-
sors; these regressors included the Decision Tree Regressor
(Tree), the Lasso Regressor (Lasso), the Gaussian Processes
Regressor (GP), and the Support Vector Regressor (SVR) .
Image featurization of these HIV models is discussed in
section 2.3, and the background on the various regres-
sors is given in section 2.4.

2.1 HIV and Acquired Immunodeficiency
Syndrome (AIDS)

HIV is a virus spread through bodily fluids that attacks
the body’s CD4+ lymphocyte immune cells (also known
as T cells). According to the World Health Organization

1



[3], this virus currently affects more than more than 37.9
million people as of 2018 and killed 770,000 people in
that same year. The virus itself works in three major
stages as described by the CDC [4]:

1. Acute HIV Infection. During this stage, the virus at-
tacks the body in large numbers, infecting many T
cells. The immune response is mostly equal and
opposite to the infection, and the majority of the
virus is effectively destroyed. An emphasis must be
placed on this surviving minority, however.

2. Latent HIV Infection. During this stage, the leftover
virus that remains in the body begins to reproduce
at a slow, undetected rate. This phase might last a
decade, though certain treatments such as the NRTI
and PI mentioned in section 1 can extend this period
into multiple decades. At the end of this stage, the
viral load in the body (that is, the amount of virus)
goes up while the T cell count goes down.

3. AIDS. When the T cell counts go below 200
cells/mm3 [21], the infected person enters the Ac-
quired Immunodeficiency Syndrome (AIDS) stage.
During this stage, the immune system’s capability to
defend against infection is greatly diminished, and
most patients typically survive as few as three years.

Worst of all the aspects of HIV are its longevity and lack
of cure. Once a person becomes infected with the virus,
there is no current way to ever rid themselves of it; they
can only delay the inevitable with drugs and treatment
through a process known as antiretroviral therapy (ART)
[22].

2.2 HIV Modeling using Cellular Automata

The idea that HIV could be modeled using CA began in
1990 under Kougias and Schulte [15]. Each new itera-
tion of CA modeling brought with it new ideas that could
more closely and accurately mimic the behavior of HIV.
While the research is not limited to the five models cho-
sen for this paper, the dos Santos, González, Moonchai,
Precharattana, and Rana models represent some of the
larger steps forward in HIV CA modeling over the last
30 years [7]. The dos Santos and Coutinho model focuses
on recreating the basic behavior of HIV infected cells in
lymph node tissue slowly overtaking the immune system
across the span of years [29].

González, et al. built upon the dos Santos and
Coutinho model with the inclusion of two ART treat-
ments, which consisted of two NTRIs and either a PI or a
non-nucleoside reverse transcriptase inhibitor (NNRTI).
The authors then examined how the different treatments
affected the dynamics of HIV within the body [8].

Moonchai and Lenbury introduced the notion of blood
transference of the virus, which could be lessened with
plasma apheresis. Plasma apheresis is a process by which
a patient’s blood is removed and stripped of its infected
blood plasma. The leftover red blood cells are then rein-
troduced into the body. Thus, to model this, Moonchai
and Lenbury had a pair of CA’s: one representing the
lymph node tissue where CD4+ cells are located, and the
other representing blood [20].

Precharattana, et al. focused on the idea that certain
HIV cells can remain dormant and not infect healthy
cells, thus creating “reservoirs” of infected cells that the
immune system does not detect [24].

Rana, et al. uses many of the same rules of the dos
Santos and Coutinho model with two key differences:
first, cells can become infected via the blood in addition
to cell-to-cell contact. Second, similar to the González
model, the Rana model introduces treatment in the form
of no treatment, mono-treatment, and dual-treatment.
This modeling of different approaches to treatment al-
lows the authors to examine how multiple types of treat-
ments used in parallel affect the dynamics of the HIV
infection [25].

Regardless of the specific ruleset or theoretical ap-
proach, each of these HIV models use a form of CA. A
cellular automaton is a model that simulates simple dis-
crete components called cells and their interactions with
the cells around them. “Discrete” in this context refers to
each cell being an individual and associated with its own
value or classifier. In all of the HIV CA models listed
above, the cells are square-shaped, represent CD4+ T
cells (except in the case of Moonchai, where they could
also represent blood cells) and all the cells are placed
into a 2D grid.1 The cells with which one cell can interact
is called a neighborhood. There are two main approaches
to a cell’s neighborhood: Von Neumann neighborhoods,
which only include the four cells that a given cell shares
a direct side with, and Moore neighborhoods, which in-
clude the side-sharing cells as well as the cells that share
a corner with a target cell. Each of the HIV CA models
utilize Moore neighborhoods. Cells along the boundaries
of the grid (e.g., first row, last column) are given special
cases, since they do not have full Moore neighborhoods.
This can cause a model to have irregular simulation of
HIV because HIV itself does not exist within a small grid
with rigid edges, but rather a continuous human body.
All of the models, apart from the Rana Model [25], dealt
with this issue by wrapping boundaries (shown in figure
1) from one side onto another. (e.g., the top-left cell now
also connects with the top-right cell and the bottom-left

1Note that CA grids can be of different shapes such as a triangles or
hexagons, and the cells can also be of different sizes. CAs are usually
taught as a 2-D shape but they can be reformatted to the nth dimension
such as 1-D or 3-D.

2



cell).

Figure 1: Example of “wrap around”. Von Neumann
neighbors of the top-left cell are highlighted in light yel-
low.

Each cell within the grid has a state (healthy, infected,
dead, or some other intermediate or special states such as
acute infected or healthy with treatment present) based
on a particular ruleset of the simulation model. Since
each model may have many different classes of similar
cells, such as a healthy cell with any variety of treat-
ment in the González model, cells of similar type can
be bundled together (e.g. all healthy cells, regardless of
whether or not they have been treated, could be put into
the “Healthy” category). By bundling, regression across
different HIV CA models with different approaches to
simulating the virus is more achievable, since all models
will then contain the same classes upon which regres-
sion can be performed. In the case of this paper, the cells
were bundled into the following four categories: healthy,
infected (and detected by the immune system), infected
(and not detected by the immune system), and dead.

To start a model, there is a process called seeding. In
this kickstarting step, cells within the CA are given a
beginning state determined by the ruleset of the model.
This seeding process is important as the following steps
of the model require a starting point to begin simula-
tions. The model then uses the ruleset to update each cell
synchronously over discrete time steps based on its state
and the states of cells within its neighborhood. “Dis-
crete” in this context means that the entire grid is up-
dated at one time for each time step. The time step itself
represents the passage of a period of real-life time, which
is weeks in the case of these HIV CA models. Each model
ends at 600 timesteps, which is 600 weeks of HIV simu-
lation. An example of discrete time stepping is shown in
figure 2, where 2-D cellular automaton evolved 3 times.
The rule set of this CA is given below the time-evolution.

2.3 Image Feature Extraction

At each timestep of the model, the grid of cells and their
states can be interpreted as a greyscale image. Image fea-
tures can then be recognized from these timestep grids,
and further processed into features with which regres-
sion can be performed. Given the propensity of CA mod-
eling towards a more disorganized image than an actual

photo would be and patterns recognized visually within
the CA model data (explored in Figures 3, 4, and 5), the
authors of this paper focused on simpler image features:
blobs, contours, and corners.

• Blobs can be described as large masses of similarly
colored cells. Figure 3 demonstrates what a blob
looks like within one of the HIV CA models.

• Contours can be described as the inner or outer edge
of a shape formed by similarly colored cells. This
shape, unlike a blob, is not filled in with uniformly
colored cells, but contains completely different col-
ors within its interior. An example demonstrating a
contour can be found in figure 4.

• Corners can be described as a sharp turn taken by a
strip of similarly colored cells. Figure 5 shows the
occurrence of corners.

Note that these figures do not represent the total appear-
ance of all potential features in these images. Figure 4,
for example, does not highlight all instances of contours,
but is simply a visual example for the reader to under-
stand what these image features look like in context.

2.4 Regressors

Once image features have been collected, regression can
be performed to determine if these image features have
a relationship with the counts of different classes of cells
at the end of the simulation. In particular, the authors of
this paper used the four regression models. What follows
is a simplified explanation of how these regressors work:

• Support Vector Machine Regressor (SVM/SVR):
this regressor uses different core functions, called
kernels, to calculate its regressions. SVRs also use
a value epsilon ε, which determines how closely the
regressor must fit the data. A regressor then utilizes
these two parameters to create a linear function us-
ing support vectors from each data point (i.e. vec-
tors drawn from a point to its nearest correspond-
ing point on the line). The function changes in ac-
cordance to the lengths of these support vectors. If
the lengths go beyond the accepted ε value, then the
function will shift to be closer to the points until as
many points as possible can fit within the given ε
value [9, p.147-168].

• Gaussian Processes Regressor (GP): much like the
SV regressor, GP regressors use kernels. Given a cer-
tain dataset, the kernel will help generate covariance
matrices Σ, which tell how any two variables or fea-
tures are related. Σ, when taken with the vector rep-
resenting the mean of the data (µ) creates a Multi-
variate Gaussian Distribution (MVD). As new data

3



Figure 2: Example cellular automaton evolving by 3 time steps. The rule set of this CA is given below the evolution.
In this rule set, each cell can either be black or white, but the shades of gray of the 4 surrounding cells indicate
the number of black neighbors around the center cell. When its neighbors are completely white, there are no black
neighbors around the center cell. Subsequent darker shades of gray indicate increasing number of black neighbors
(1,2,3,4) around the center cell.

Figure 3: Blobs (highlighted by red borders) that can be
detected by image processing libraries.

is analyzed, new MVD’s are created, and the GP re-
gressors creates a probabilistic distribution of where
a data point is likely to land among the many pos-
sible MVD’s [10]. This probabilistic distribution is
then used to perform regression.

• Lasso Regressor: The lasso regressor is an exten-
sion to the ordinary linear square (OLS) regression.
In OLS, we aim to find a vector w of weights so

Figure 4: Contours (highlighted by red borders) that can
be detected by image processing libraries.

that the objective function ‖Xw− y‖2
2 is minimized,

where X is a matrix of observations where each row
contains all features of a single record arranged in
columns, y is response vector, containing the tar-
get for each row, and ‖·‖2 denotes the `2 norm. In
this computation, all features are equally consid-
ered, which might lead to significant underfitting
if a feature is uncorrelated with the target. Lasso

4



Figure 5: Corners (highlighted by red borders) that can
be detected by image processing libraries.

aims to combat this shortcoming by adding a penal-
izing factor to the object function, which now reads
‖Xw− y‖2

2 +α‖w‖1, where ‖·‖1 denotes the `1 norm.
As a consequence, lasso will tend to prefer solutions
with fewer nonzero entries in w, effectively limiting
the number of features we consider [23].

• Decision Tree Regressor: this model is the simplest
of the four regressors. Essentially, given a data set,
a DT regressor will begin to cut the data based on
its ability to predict values correctly based on the
cut. The data is then cut recursively until there are
not enough data points to cut into smaller sections
or until the model reaches its predetermined maxi-
mum depth [9, p.169-180].

3 Methods

From several thousand simulations of these models at
various sizes (side lengths of 800×800, 1000×1000 and
1200 × 1200), image features were collected every five
timesteps until t = 200. The implementations of these
models are described in section 3.1, and the chosen im-
age features are detailed in section 3.2. Once this step
of data collection was complete, several aforementioned
regression models were used to predict the final steps
of each of the HIV models. The hyperparameter tuning
(HT) of these regression models and the specific hyper-
parameters used are described in section 3.3. Figure 6

helps visualize this process.

3.1 Implementations of HIV CA Models

Instead of using the original implementations of the HIV
CA models, the authors of this paper reimplemented
them with five optimizations that would allow for the
models to run faster and at larger sizes, based on previ-
ous research [7]. Listed below are the five optimizations:

1. Just-in-time (JIT) Compilation, which saves time by
compiling the code as it runs, rather than Python’s
usual method of interpreting each line of code.

2. Parallel Processing, which allows the code to use
more of the computer’s cores at once for its calcu-
lations.

3. Xoroshiro 128 Random Number Generation, which is
a multithreaded way to generate new randomized
values. This is especially useful when determining
if a cell will change to a certain state based on prob-
ability.

4. Swapping memory addresses, which saves computa-
tional power that would otherwise be spent copying
data at a memory address to a new one. This is es-
pecially helpful when moving the replacing the old
grid with the buffered grid.

5. Addition-based rules, which allow the count each cell
state as a number rather than a class, which allows
for Moore neighborhood checks to be boiled down
to a simple mathematical equation.

To verify that these new optimizations did not alter the
outcomes of the HIV models from the findings of the
originals, a sample of ten simulation runs were taken
to find average cell counts of the four classes (healthy,
infected and detected, infected and not detected, and
dead) at each timestep. Then the minimum number of
replications needed to produce a confidence interval of
95% was calculated at each timestep. The maximum of
these values found then became the minimum number
of replications the new optimized model needed to run
to achieve proper confidence that the optimizations had
not affected the outcomes of the models. Once the confi-
dence intervals were constructed, the cells counts were
compared between the optimized models and original
models. This allowed for verification of the emerging bi-
ology of the models. After verifying the biological aspect
of the newly optimized CA models, full simulation runs
with all 600 timesteps were put into short video files to
verify that the optimizations did not change the image
analysis aspect of the HIV modeling. With both points
of verification passed, the authors of this paper are con-
fident that the optimizations maintained the biological

5



Feature
Extraction

t =�0�Features t�=�5�Features t =�10�Features
dos�Santos�Model
Grid Size: 800
Replication:�1

dos�Santos�Model
Grid Size: 800
Replication: 2

…

Rana Model
Grid Size: 1200
Replication: 300

…

…

CV

CV,�Hyper�Parameter�Tuning

Decision
Tree

CV

CV,�Hyper�Parameter�Tuning

SVR�(SVM)

…

…

Figure 6: Summary of the Machine Learning process followed in this report. We repeatedly run all simulation models
for various grid sizes and extract image features based on the saved simulation grids. These data are organized into
feature matrices (spreadsheets) and are divided into sections by the time step from which the features were derived.
We then build subsets of the original spreadsheet as shown in the diagram, and use them as training data for the four
regressors. Nested CV is employed to prevent overfitting during hyperparameter tuning.

and visual integrity of the original CA models while dra-
matically increasing the speed at which they process.

3.2 Image Feature Collection

After running each HIV simulation model 300 times at
the three desired grid lengths (800× 800, 1000× 1000
and 1200× 1200 cells), all of the timestep data from all
grid lengths was collected into one dataset for image fea-
ture analysis. (The different grid lengths were combined
into a single dataset to prevent regressors overfitting to
one particular size, and instead allow regressors to gen-
eralize to any desired grid length.) Special attention was
given to any model with treatment, since the introduc-
tion of treatment completely changes the dynamics of
the cells within the simulations. Even though current
results are based on starting treatment at the time spec-

ified in the original models’ papers, we also investigated
the effect of administering treatments at t = 2, t = 4, and
t = 8 [1, 18]2. Using the SciKit-Image and OpenCV li-
braries, image features were identified at timesteps t ∈
{0,5, . . . ,195,200}. This range of timesteps was selected
to build a linear response curve that would give us an
early indication of how the system was responding to dif-
ferent sets of timestep data. If we are able to prove the
link between end states of CA models and image features

2The González model introduces treatment normally at t = 300.
Since the authors of this paper only collect image features up until
t = 200, the error was exceptionally high for this model because the
CA dynamics when the features were collected differ wildly from those
that exist at t = 600. Thus, the introduction of treatment at t = 2, t = 4,
and t = 8 does not align with the original González model. The au-
thors acknowledge this difference, but argue that a differing approach
to treatment administration times is necessary for this paper to achieve
its end goal, and a compromise must be made.

6



in the early stages, further research will more finely ex-
plore the extent of this relationship. For the purposes of
this report, a timestep gap of five will provide a rough
picture of the tendencies of the system. Once image fea-
tures were identified, there came a challenge: how does
one turn the location of a feature into a numerical value?
For the purposes of this paper, this team focused on eas-
ily obtainable numerical values such as the number of
occurrences of a feature or the average distance between
said occurrences. Parameters for the functions from the
OpenCV and SciKit-image libraries can be found in Fig-
ure 13.

• Blobs: once blobs were located in the image using the
various libraries, a few values were extracted. From
the OpenCV library, blobs features found using the
SimpleBlobDetector included the number of blobs
with an area of at least 10, the average distances
between any two blobs with an area of at least 10,
and the average size of blobs with an area of at least
10. From the Sci-Kit Image library, blob features in-
cluded the number of blobs located by a standard
blob_log function, the average size of these blobs,
the variance in the X coordinates of located blobs,
and the variance in the Y coordinate of the located
blobs. The cutoff of 10 is chosen so that we will fil-
ter out cell-by-cell level information and focus on
behaviors arising from ensembles, especially at the
early stages of the simulation. An illustration of this
idea is given in figure 7. When the figure has many
bubbles of infected cells in the t = 1 plot, our cutoff
is not overly restrictive as to wash out those blobs,
and when there are only a few big blobs at t = 15,
the cutoff is suitably large to ignore the pixel level
infections. However, when treatment is turned on
for the models that have it, the blobs become inter-
mixed and many of them are small, as shown in fig-
ure 8. In this case, although the cutoff is serving to
reduce the amount of trivial blobs, one might argue
it is too aggressive. Further research will examine
if using smaller cutoffs, especially for models with
treatment, will result in more informative image fea-
tures.

• Contours: after locating contours using the OpenCV
library’s findContours function, the following val-
ues were obtained: the number of contours with an
area of at least 10, the average area of contours with
an area of at least 10, the number of contours with
an area of at least 100, the average area of contours
with an area of at least 100, the number of contours
with a perimeter of at least 10, the average area of
contours with a perimeter of at least 10, the num-
ber of contours with a perimeter of at least 20, he
average area of contours with a perimeter of at least

20, the maximum area of all contours, and the max-
imum perimeter of all contours. Similar to blobs,
the area and perimeter values of 10 were chosen in
an attempt to filter out noise from the data. The
larger values of 100 for area and 20 for perimeter
were chosen to see if the smaller contours made a
difference, or if only larger shapes found within the
image had bearing over its final state. An illustra-
tion of different sized parameter cutoffs is shown in
figure 9. When the figure has many specks in the
t = 1 plot, our cutoff is large enough to filter out the
small contour shapes with a perimeter less than 10.
A contour perimeter cutoff size of 20 is too large for
the first couple timesteps and filters out all of the
contour perimeter sizes. When observing the t = 15
timestep, the cutoff at 10 is large enough to filter
out the trivial contours with parameters less than
10 similar to the blob cutoffs. The cutoff of 20 fil-
ters out for parameter sizes and is more restrictive
that the cutoff at 10. When the simulation reaches
t = 100, the number of contours with larger perime-
ters drop and the cutoff of 10 and 100 both filter out
the specks of infected cells with parameter sizes less
than 10. For all three timesteps, one might argue
that there is not that much of a difference between
a cutoff of 10 and a cutoff of 20 and that the second
cutoff should be a larger value to test if there is a
difference between being aggressive with the cutoff
sizes and being relaxed with the cutoff sizes. The
different cutoffs of contour areas is illustrated in fig-
ure 10. When the figure has many specks of infected
cells as in the t = 1 plot, our cutoff is large enough to
filter out the small contour shapes with an area less
than 10 just like in the perimeter figure. Just like in
the previous figure on contour perimeter sizes, the
cutoff greater than 10 ended up filtering out all of
the contour. When observing the t = 15 timestep,
out cutoff of 10 is still able to filter out the trivial
contours with an area less than 10. There are also a
more medium sized contours with areas between 10
and 100 which are being filtered out by our second
cutoff size of 100. This is too aggressive of a cutoff
size when there is a small number of contours with
areas greater than 10 such as in t = 1 and t = 100 but
is not too aggressive when there is a greater number
of contours with areas larger than 10 as in t = 15. At
the t = 100 timestep, the graph is relatively flat past
the contours with areas greater than 10, so one could
argue that the size cutoff of 100 is too aggressive and
a smaller value of the cutoff could be chosen.

• Corners: using the SciKit-Image library, the follow-
ing values were obtained: the number of corners
found by the corner_harris function and the dis-

7



tance between these corners. The Harris Corner De-
tector function essentially works to identify corners
by creating a map of the image that associates a “cor-
ner score” with each pixel. Used in conjunction with
the corner_peaks function, clusters of high scores
are identified as corners within the image.

3.3 Regression

With the image features collected, the data is nearly
ready for regression. Regression is the statistical prac-
tice of predicting some numerical measure of a new data
point in a dataset, given the characteristics of said data
point. The target measures for the HIV CA models are
the percentages (as opposed to the counts, since multiple
grid sizes were used) of each target class (healthy, dead,
latently infected, and acute infected). From each of the
simulation runs of all five HIV models, all 4 class per-
centages were calculated at the final timestep, t = 600,
or 600 weeks after the onset of HIV in the human body.
Once the composite data set of image features and target
class percentages is created, regression can begin. Each
regression task has a rather complex process, described
in Figure ?. Essentially, the regressors choose a target nu-
merical value to predict, and are fed increasingly more
information; at first, they have access to the data from
t = 0, then from both t = 0 and t = 5, and so on until the
regressor has access to the data from all timesteps dur-
ing which image information was collected. At the end
of each regression task, an error rate is calculated using
root mean squared error (RMSE), which, for a sequence of
data {yi}Ni=1, is given by

RMSE =

√∑N
i=1(yi − ȳ)2

N
,

where ȳ is the sample average. The RMSE is a posi-
tive value that dictates how far a regressors prediction
is away from the target value. For instance, if the tar-
get value indicated that 7.3% of the cells at the end of a
simulation run were dead, and a regressor predicted that
6.1% of the cells would be dead given information from
timesteps 0 through 100, an RMSE value of 1.2. In con-
text, this would mean that this particular regressor will
predict, on average, a percentage of dead cells that is off
from the true percentage by 1.2%.

The regressors are trained by attempting to lower the
RMSE error without approaching an error of 0, with the
end goal of generalizing predictions on new data. If an
error of 0 were to happen, then the model would not
adapt well to new data points, and would be overfit to
the current dataset. Thus, a rigorous approach must be
taken to lower error without overfitting. This process is
a combination of nested cross-fold validation (CFV) and

hyperparameter tuning (HT). When training a regression
model on a dataset, there must be a subdivision within
the dataset to test the model on. It cannot be tested on
data it has already seen; rather, the test set of data is not
seen by the model until it is being tested for accuracy.
This, to properly validate the accuracy of a model, CFV
is utilized. This process breaks down the dataset into k
folds or “chunks”. The model is first trained on the first
k−1 folds, and tested on the kth fold. This process is re-
peated until all k folds have been utilized as the test set of
data. The nested portion of this process comes from fur-
ther subdividing the dataset one more time into a valida-
tion set. This validation set is a subset of the training set
already previously identified. Why validate the model
before testing it? This comes back to HT. Hyperparame-
ter tuning is a process by which the various parameters
of a model are tuned to have the lowest error. In order
to find which given set of parameters obtains the lowest
error, each regressor must be validated. Listed below are
the various models used and the hyperparameter ranges
that were tuned. Specific hyperparameter ranges can be
found in Figure 13, if they deviated from the default val-
ues.

• Support Vector Machine: We chose to use SciKit-
Learn’s Support Vector regressor. This regressor
used two kernels: the Radial Basis Function (RBF)
and Polynomial kernels, as well as the gamma, C,
epsilon, and degree parameters The authors used a
range consistent with prior research [12], While, ac-
cording to this report’s findings, it is desirable that
a larger range is used, the authors used a smaller
range to save on computational resources.

• Gaussian Process: We chose to use SciKit-Learn’s
Gaussian Process regressor. We used the RBF kernel
and varied the alpha parameter.

• Lasso We chose to use SciKit-Learn’s basic Lasso
regressor. Unlike previous regressors, this regressor
does not have different kernels. Instead, the only
hyperparameter adjusted in this research is alpha.

• Decision Tree We chose SciKit-Learn’s Decision
Tree regressor. Parameters max depth and min -

samples split were tested.

Note that we chose to use these four regressors because
of their pervasive usage within the machine learning aca-
demic sphere. A convolutional neural network (CNN)
did not make sense in this context given the complexity
of the model and lack of data. Additionally, in light of
the novelty of this approach, simpler models were pre-
ferred for the authors’ and reader’s ability to compre-
hend the results and their implications better than the
”black-box” approach of CNNs.

8



Once all parameter combinations have been validated
within the inner fold (the fold the CFV with the vali-
dation sets), then the regressor with the best parameter
combination moves to the outer fold to calculate an aver-
age error and standard deviation from this average error
using the k folds of test datasets. Once again, this com-
plex process is described in figure 6.

Finally, after CFV and HT, a factorial analysis (FA) is
performed. This process involves two steps. First, each
of the features is either included in a test data set or re-
moved. RMSE scores on a Decision Tree are calculated
to determine how each factor affects the outcome of the
RMSE. After that, once all of these RMSE scores have
been calculated, interactions between the features are
computed and all RMSE scores are analyzed to see which
feature or feature set had the most effect on the outcome.
For this FA, the authors bundled each of the similar fea-
tures together into 7 categories: blob features seen by
the SimpleBlobDetector, contours features of area 10,
contour features of area 100, contour features of perime-
ter 10, contour features of perimeter 20, blob features
located by the blob_log function, and corner features.
Since the resulting FA has a total of 27 (128) combina-
tions, the results were further filtered into any feature or
feature set that contributed 5% or more to the outcome
of the RMSE. The results from this rigorous process are
provided in section 4 and discussed in section 5.

4 Results

The objective of this section is to show how successful
the different regressors are at predicting the final state of
each CA model based on the features extracted. In the
following sections, we first examine the feature extrac-
tion algorithms used and then examine the plots gener-
ated after running the four regressors.

4.1 Feature Extraction

After each CA model was simulated and a grid was saved
for every time step, features were extracted based on
what was observed. As the number of infected cells
spread, this affected the number and type of features de-
tected during the feature extraction process. There were
20 features extracted such as the number of blobs with
certain areas, corners and contours. When the t = 1,
there are a couple blobs detected which represent the
first infected cells. Then, as the number of infected cells
increased, the number of features detected increased in
tandem. When observing a grid after 40-time steps, in all
the models except the Rana model, a ”ripple effect” was
observed. This ripple effect refers to the process of an
infected cell infecting its neighbors, which then in turn

infect their own neighbors, and so on. This effect is sim-
ilar to when a rock is thrown into a lake which creates
a ripple across the surface of the water. When the orig-
inal cell dies, another ripple is created. A new healthy
cell then replaces the dead cell which then becomes in-
fected again. This process continues and creates several
ripples. For every time step afterwards, the ripple effect
spreads until a steady state is reached; the number of
each type of cell remains relatively constant. As the rip-
ples spread, it leads to more blobs, corners, and contours
being detected.

4.2 Regression Plots

Once the features were extracted, they were run through
different regressors to see if the last time step could be
predicted. After running the regressors, the data that
was generated was compiled into plots of the RMSE,
which were then examined to see how each regression al-
gorithm performed over time. Each cell count was con-
verted into a percentage before being fed into each re-
gression algorithm.3 Thus, the RMSE data indicates by
what percentage a regressor’s prediction deviated from
the expected percentage of a target cell class. The infor-
mation on the contribution of each feature to the overall
RMSE can be found in Table1.

4.2.1 Parameter Tuning

After performing a nested CV as described in section 3
on our methods, it is observed during each outer fold, the
best parameters chosen by the inner fold stayed roughly
the same, except for a few situations where randomness
in data selection resulted in abnormal training data. This
behavior agrees with our expectation. Particularly illu-
minating however are the parameters for the decision
tree regressor, since the parameters chosen (max depth

and min samples split) have rather straightforward im-
plications on our data. For most models and classes,
max depth remained low (at 4), indicating that our re-
gressor might not have enough informative features to
base predictions on.

4.2.2 Support Vector Machine

The first regressor investigated is the support vector ma-
chine shown in figure 11. For the dos Santos graph,

3Note that, though these graphs are grouped by regressor, they do
not share the same scale. Each of the RMSE graphs has a radically dif-
ferent magnitude of error, from 10−4 all the way to 10−1. This drastic
difference between scales is not conducive even to a logarithmic scale
graph, as all four individual classes compress into an unreadable for-
mat. Thus, when reading these graphs, take care to notice their scale, as
each model tends to stay within its own scale. This is explored more in
the discussion, which proposes the idea that results are heavily model-
dependent.

9



the RMSE for healthy cell plot started around 0.02 and
stayed the same for every timestep. This is the same for
the dead and infected cells. From examining the plot fur-
ther, it can also be seen that the RMSE for the acute in-
fected cell plots has the highest variance while dead and
latent infected cell plots have the smallest variance. For
the González model, the RMSE plots also stayed about
the same throughout the simulation. The RMSE vari-
ance for the acute infected cells and the healthy cells
has a lot of overlap and the latent infected cell plots
has a lot of overlap with the dead cell plots. The graph
for the Rana graph follows a similar trend to the last
two and the Precharattana graph mostly follows a sim-
ilar trend to the other graphs except for the start and
middle of the simulation. During the first couple time
steps, the variance decreases, increases again in the mid-
dle of the simulation and then decreases again. The
Moonchai graph showed the most change than any other
graph, mainly for the latent infected and healthy cell
plots. The two plots follow a decaying sinusoidal pattern
as the time step increased. Another thing to note is that
the Moonchai and Precharattana graphs had the smallest
RMSE with under 0.0008 and 0.0006 respectively while
González had the largest RMSE at 0.15.

4.2.3 Gaussian Process

The second regressor examined is the Gaussian Process
regressor shown in figure 18 which has the same range
for the RMSE as the SV regressor. One notable exception
is in the first couple time steps of the Moonchai graph.
At the start of the simulation, the calculated RMSE for
the latent infected cells is around 0.0005 and decreases
for the next couple timesteps. As the simulation contin-
ues and the number of latent infected cells increases, the
calculated RMSE at time step 25 jumps up to 0.0010 and
has a larger variance. This coincides with with the rapid
expansion of infected cells after the latent period is over.
The RMSE for the latent infected cells and the acute in-
fected cells is different than the SV regressor in that the
latent infected cell RMSE plot is higher than the RMSE
plot for the acute infected cells. This is only true for
the time steps after 30 because before this the RMSE for
Moonchai’s latent infected cells was higher than 0.0006.
The RMSE for the Precharattana and González graphs is
similar to the SV regressor. The only difference in the
González graph of this regressor is that there is a slight
drop in the start of the graph until time step 30 when
it goes back to the starting value. The Rana graph has
a maximum RMSE of about 0.006 and stays at around
the same RMSE through the entire graph. There is one
drop in the RMSE at time step 15 but jumps back up
to the previous RMSE at time step 25. This is interest-
ing because this is the one of the only rund where the

RMSE ended better than it started. Except for the Moon-
chai plot, the RMSE is greater for the healthy and acute
infected cell plots and lower for the latent infected and
dead cell plots.

4.2.4 Lasso

In the Lasso regressor shown in figure 13, the ranges for
the graphs are roughly equivalent to the last two regres-
sors except for the Moonchai graph for the Gaussian pro-
cess. The González graph has the highest RMSE and the
Moonchai and Precharattana graphs have the smallest
RMSE. In the Precharattana model, the RMSE for the la-
tent infected cells is 0 throughout the whole simulation.
The Rana graph with this regressor has the most fluc-
tuations even though it ends and begins with the about
the same RMSE and variance. The graph shows that the
regressor was the least accurate at predicting the out-
come around the 25th timestep but got gradually bet-
ter afterwards. The Rana graph RMSE was improving
at the beginning of the simulation but once the med-
ication treatments were implemented, the Rana graph
RMSE got progressively worse. The latent infected and
the dead cell plots were two cell types that had the small-
est RMSE in all the graphs while the acute infected cells
and the healthy cells had the largest RMSE. In the dos
Santos and the Rana graphs, the healthy cells had the
largest RMSE while in the Precharratana, Moonchai and
González graphs, the acute infected cell plots had the
highest RMSE.

4.2.5 Decision Tree

The last regressor examined is the decision tree regressor
shown in figure 14 with the RMSE being plotted for each
time step in each model. When looking at the figure,
González has the largest RMSE just like the other graphs.
The plots with the smallest RMSE plots are Moonchai
and Precharattana. When looking at the five graphs, it
can be seen that the latent infected cells plots have the
smallest RMSE and variance than other three cell types.
The RMSE for each graph stays about same the with some
fluctuation throughout the simulation while the variance
either increased or decreased for each graph. The Rana
graph has a large fluctuation in the beginning but de-
creases and levels off at about the 20th time step. The
dos Santos graph has the opposite effect where it starts
with a smaller RMSE and increases for the next couple
time steps. It has another spike in its RMSE at around
time step 105 and 110.

4.3 Special Treatment Introductions

For the two models with ART treatments, the authors
wanted to analyze the effects of early on-set treatments

10



on the spread of HIV, as discussed in the methods sec-
tion. This subsection will focus on comparing the origi-
nal results with each of the various treatment introduc-
tion times.

4.3.1 Treatment at 2 Weeks

As seen in Figure 15 , the Rana model has no particu-
larly interesting patterns seen in the RMSE over time for
any of the models, except perhaps the Decision Tree, dur-
ing which the Rana model oscillated irregularly across a
small range of values much more than the other mod-
els, though the difference in RMSE in these variations
is not of great significance, as the RMSE hovers around
a value of between 0.0001 and 0.0010. The González
model, on the other hand, showed a similar pattern to
Rana for only the SV regressor. However, all of the other
regressors showed their own characteristic differences.
Notably, the Tree seems to be the only of the models that
had a consistently lowering RMSE, which would suggest
that it is following a pattern of increased performance
with increased access to data. The Lasso regressor fol-
lows that pattern until around timestep 125, at which
point it starts to rise again: not to the original RMSE val-
ues at the 0th timestep, but still higher than 100 weeks.
The GP regressor also appears to be rather consistent ex-
cept for a drastic dip in RMSE scores before t=25.

4.3.2 Treatment at 4 Weeks

As seen in Figure 16 , the Rana model once again main-
tains its similar pattern of steady RMSE scores across the
board, with slight variations along the way. The Gonzĺez
model, however, shows great promise. While most of
the models so far have held relatively steady for most
of the regressors, the González model had increased per-
formance with increased data almost across the board for
three of the four regressors. The Decision Tree had a con-
sistent decline in RMSE, minus a slight bump upwards at
t=20. The SV regressor had a slower, but still markedly
negative curve to its RMSE graph. The Lasso also showed
a continual decline in RMSE. In fact, the only regressor
that did not show this consistent decline is the GP regres-
sor, which maintained the pattern of dipping the RMSE
at t=25 and then returning to consistent values.

4.3.3 Treatment at 8 Weeks

Unfortunately, as explored in Limitation 3 in section 5.3,
these were unable to finish in time, despite given almost
5 full days of work. One of the regressors, the González
1200x1200 model took far longer to complete, and in fact
did not complete in time, than the other models. Thus,
a complete analysis for this data must wait until all the

data has been completely processed: a sad fact that can-
not be met before this paper’s deadline.

5 Discussion

HIV virtual laboratories have existed for quite a long
time, as has using cellular automata to simulate a small
group of cells. The problem with simulating disease
dynamics in an individualized manner for a patient is
how computationally expensive it may become. Many
patients do not have the access to the resources neces-
sary to run these simulations. With a large grid size,
many time steps, and variability requiring up to thou-
sands of replications to guarantee 95% confidence, even
a minor increase in cell count or grid size can have a
more pronounced effect on the computational require-
ments of the simulation. There is a balance to be struck
between lowering these requirements and providing re-
sults that are accurate enough to be confidently used in
the decision-making process for treatment. The process
detailed within this paper describes an approach that at-
tempts to find this balance using feature extraction and
regression.

5.1 Present Work

The first step in this procedure was to identify five dif-
ferent CA models, each with their own ruleset to deter-
mine cell state-changes, and seed each model. The mod-
els were each optimized if they did not contain previ-
ously researched optimization methods such as JIT, par-
allel processing, and PRNG. Each model was run 300
times for each of three grid sizes (800x800, 1000x1000,
and 1200x1200), with data being collected and viewed
as greyscale images with the SciKit-Image and OpenCV
libraries. Feature extraction was performed on desired
time steps up to 200. Then Support Vector, Gaussian
Processes, Lasso, and Decision Tree regressors were each
used to get the error rate with RMSE. To avoid overfitting
the new model to the data, nested cross-fold validation
and hyperparameter tuning were employed.

11



0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

Simulation Snapshot
Healthy
Acute Infected
Latent Infected
Dead

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Size Cutoff

3250

3500

3750

4000

4250

4500

4750

Nu
m

be
r o

f B
lo

bs

Number of Blobs
t = 1

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

Simulation Snapshot
Healthy
Acute Infected
Latent Infected
Dead

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Size Cutoff

36

37

38

39

40

41

42

43

Nu
m

be
r o

f B
lo

bs

Number of Blobs
t = 15

Figure 7: Snapshot of the simulation (left) and the number of blobs detected from that snapshot as a function of
cutoff size by the OpenCV Blob Detector at t = 1 and t = 15 of the Rana model.

12



0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

Simulation Snapshot
Healthy
Acute Infected
Latent Infected
Dead

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Size Cutoff

0

1000

2000

3000

4000

5000

6000

7000
Nu

m
be

r o
f B

lo
bs

Number of Blobs
t = 100

Figure 8: Snapshot of the simulation (left) of the Rana model and the number of blobs detected from that snapshot
as a function of cutoff size by the OpenCV Blob Detector at t = 500.

13



0 100 200 300 400 500 600

0

100

200

300

400

500

600

Simulation Snapshot
Healthy
Acute Infected
Latent Infected
Dead

0 20 40 60 80 100
Size Cutoff

0

250

500

750

1000

1250

1500

1750

Nu
m

be
r o

f p
er

im
et

er
 c

on
to

ur
s

Number of perimeter contours
t = 1

0 100 200 300 400 500 600

0

100

200

300

400

500

600

Simulation Snapshot
Healthy
Acute Infected
Latent Infected
Dead

0 20 40 60 80 100
Size Cutoff

100

200

300

400

500

600
Nu

m
be

r o
f p

er
im

et
er

 c
on

to
ur

s
Number of perimeter contours

t = 15

0 100 200 300 400 500 600

0

100

200

300

400

500

600

Simulation Snapshot
Healthy
Acute Infected
Latent Infected
Dead

0 20 40 60 80 100
Size Cutoff

100

200

300

400

Nu
m

be
r o

f p
er

im
et

er
 c

on
to

ur
s

Number of perimeter contours
t = 100

Figure 9: Snapshot of the simulation (left) and the number of contours detected from the snapshot with a perimeter
greater than the cutoff at t = 1, t = 15 and t = 100 of the Precharattana Model.

14



0 100 200 300 400 500 600

0

100

200

300

400

500

600

Simulation Snapshot
Healthy
Acute Infected
Latent Infected
Dead

0 20 40 60 80 100
Size Cutoff

0

250

500

750

1000

1250

1500

1750

Nu
m

be
r o

f a
re

a 
co

nt
ou

rs

Number of area contours
t = 1

0 100 200 300 400 500 600

0

100

200

300

400

500

600

Simulation Snapshot
Healthy
Acute Infected
Latent Infected
Dead

0 20 40 60 80 100
Size Cutoff

100

200

300

400

500

600
Nu

m
be

r o
f a

re
a 

co
nt

ou
rs

Number of area contours
t = 15

0 100 200 300 400 500 600

0

100

200

300

400

500

600

Simulation Snapshot
Healthy
Acute Infected
Latent Infected
Dead

0 20 40 60 80 100
Size Cutoff

100

200

300

400

Nu
m

be
r o

f a
re

a 
co

nt
ou

rs

Number of area contours
t = 100

Figure 10: Snapshot of the simulation (left) and the number of contours detected from the snapshot with an area
greater than the cutoff at t = 1, t = 15 and t = 100 of the Precharattana Model.

15



Table 1: Factorial analysis of the individual contributions of a feature or set of features

Model Cell Type Feature Contribution

Rana

H blob log 31.89%

A1 blob log 27.51%

A2 blob log 29.15%

D blob log 29.36%

Gonzalez

H None above 5%

A1 None above 5%

A2 None above 5%

D
contours w/ perim 10 7.60%

contours w/ perim 20 5.56%

Precharattana

H None above 5%

A1 None above 5%

A2 None above 5%

D corners 5.57%

Moonchai

H None above 5%

A1 None above 5%

A2 None above 5%

D None above 5%

dos Santos

H
contours w/ area 100 9.51%

contours w/ area 10, contours w/ area 100, contours w/ 20
(all combined) 5.06%

blob log 12.55%

A1

blobs by SimpleBlobFinder, contours w/ area 100,
contours w/ perim 10, contours w/ perim 20 (all combined) 5.14%

contours w/ perim 10 8.40%

blob log 15.38%

A2

blobs by SimpleBlobFinder, contours w/ area 10, contours w/
area 100, contours w/ perim 20, corners (all combined) 5.45%

contours w/ area 10, contours w/ area 100, contours w/ perim 10,
corners (all combined) 5.08%

D
contours w/ area 100, blog log (all combined) 5.05%

contours w/ area 10, contours w/ perim 20 (all combined) 6.68%

16



Figure 11: Average RMSE of the support vector machine regressor for data from each CA model after a 10-fold cross
validation. The y axis plots the percentages in decimal, i.e. 0.01 means 1% (of total cells count). The x axis plots the
maximum t up to which image features were considered by the regressor.

17



Figure 12: Average RMSE of the gaussian process regressor for data from each CA model after a 10-fold cross val-
idation. The y axis plots the percentages in decimal, i.e. 0.01 means 1% (of total cells count). The x axis plots the
maximum t up to which cell counts were considered by the regressor.

18



Figure 13: Average RMSE of the lasso regressor for data from each CA model after a 10-fold cross validation. The y
axis plots the percentages in decimal, i.e. 0.01 means 1% (of total cells count). The x axis plots the maximum t up to
which image features were considered by the regressor.

19



Figure 14: Average RMSE of the decision tree regressor for data from each CA model after a 10-fold cross validation.
The y axis plots the percentages in decimal, i.e. 0.01 means 1% (of total cells count). The x axis plots the maximum t
up to which image features were considered by the regressor.

20



Figure 15: RMSE of all 4 regressors for data from the González and Rana models where treatment was introduced
after 2 weeks after a 10-fold cross validation. The y axis plots the percentages in decimal, i.e. 0.01 means 1% (of total
cells count). The x axis plots the maximum t up to which image features were considered by the regressor.

21



Figure 16: RMSE of all 4 regressors for data from the González and Rana models where treatment was introduced at
4 weeks after a 10-fold cross validation. The y axis plots the percentages in decimal, i.e. 0.01 means 1% (of total cells
count). The x axis plots the maximum t up to which image features were considered by the regressor.

22



Table 2: Table of RMSE ranges for different regressors and CA simulation models.

Model Regressor State RMSE RANGE
RANA GAUSSIAN PROCESS CELL H 0.000801
RANA GAUSSIAN PROCESS CELL D 0.000131
RANA GAUSSIAN PROCESS CELL A1 0.00053
RANA GAUSSIAN PROCESS CELL A2 0.000133
RANA LASSO CELL H 0.001764
RANA LASSO CELL D 0.000288
RANA LASSO CELL A1 0.001173
RANA LASSO CELL A2 0.000293
RANA TREE CELL H 0.001503
RANA TREE CELL D 0.000249
RANA TREE CELL A1 0.000981
RANA TREE CELL A2 0.000229
RANA SVR CELL H 2.4e-05
RANA SVR CELL D 2e-05
RANA SVR CELL A1 3.2e-05
RANA SVR CELL A2 1e-06
DOSSANTOS GAUSSIAN PROCESS CELL H 1e-06
DOSSANTOS GAUSSIAN PROCESS CELL D 0.0
DOSSANTOS GAUSSIAN PROCESS CELL A1 0.0
DOSSANTOS GAUSSIAN PROCESS CELL A2 0.0
DOSSANTOS LASSO CELL H 0.000115
DOSSANTOS LASSO CELL D 0.0
DOSSANTOS LASSO CELL A1 8.5e-05
DOSSANTOS LASSO CELL A2 0.0
DOSSANTOS TREE CELL H 0.012068
DOSSANTOS TREE CELL D 0.001441
DOSSANTOS TREE CELL A1 0.010515
DOSSANTOS TREE CELL A2 0.001336
DOSSANTOS SVR CELL H 0.000106
DOSSANTOS SVR CELL D 4.2e-05
DOSSANTOS SVR CELL A1 7.3e-05
DOSSANTOS SVR CELL A2 6.2e-05
PRECHARATTANA GAUSSIAN PROCESS CELL H 0.0
PRECHARATTANA GAUSSIAN PROCESS CELL D 0.0
PRECHARATTANA GAUSSIAN PROCESS CELL A1 0.0
PRECHARATTANA GAUSSIAN PROCESS CELL A2 0.0
PRECHARATTANA LASSO CELL H 0.0
PRECHARATTANA LASSO CELL D 0.0
PRECHARATTANA LASSO CELL A1 0.0
PRECHARATTANA LASSO CELL A2 0.0
PRECHARATTANA TREE CELL H 2.7e-05
PRECHARATTANA TREE CELL D 2.2e-05
PRECHARATTANA TREE CELL A1 2.7e-05
PRECHARATTANA TREE CELL A2 0.0
PRECHARATTANA SVR CELL H 2.1e-05
PRECHARATTANA SVR CELL D 1e-05
PRECHARATTANA SVR CELL A1 3.6e-05
PRECHARATTANA SVR CELL A2 0.0
GONZALEZ GAUSSIAN PROCESS CELL H 0.00439
GONZALEZ GAUSSIAN PROCESS CELL D 0.0

23



Table 2: Table of RMSE ranges for different regressors and CA simulation models.

Model Regressor State RMSE RANGE
GONZALEZ GAUSSIAN PROCESS CELL A1 0.000763
GONZALEZ GAUSSIAN PROCESS CELL A2 0.0
GONZALEZ LASSO CELL H 0.011753
GONZALEZ LASSO CELL D 0.000361
GONZALEZ LASSO CELL A1 0.006386
GONZALEZ LASSO CELL A2 0.00052
GONZALEZ TREE CELL H 0.025423
GONZALEZ TREE CELL D 0.006107
GONZALEZ TREE CELL A1 0.014754
GONZALEZ TREE CELL A2 0.007756
GONZALEZ SVR CELL H 0.004509
GONZALEZ SVR CELL D 0.000107
GONZALEZ SVR CELL A1 0.001531
GONZALEZ SVR CELL A2 0.000418
MOONCHAI GAUSSIAN PROCESS CELL H 0.000511
MOONCHAI GAUSSIAN PROCESS CELL D 0.0
MOONCHAI GAUSSIAN PROCESS CELL A1 0.0
MOONCHAI GAUSSIAN PROCESS CELL A2 0.000683
MOONCHAI LASSO CELL H 2.7e-05
MOONCHAI LASSO CELL D 1e-06
MOONCHAI LASSO CELL A1 4e-06
MOONCHAI LASSO CELL A2 2.6e-05
MOONCHAI TREE CELL H 2.3e-05
MOONCHAI TREE CELL D 2.3e-05
MOONCHAI TREE CELL A1 3.2e-05
MOONCHAI TREE CELL A2 3.3e-05
MOONCHAI SVR CELL H 0.00022
MOONCHAI SVR CELL D 5.4e-05
MOONCHAI SVR CELL A1 0.0
MOONCHAI SVR CELL A2 0.000323

24



5.2 Implications of Results

Based on the results there is evidence that the predictions
are viable to a degree, but there are some concerns. The
RMSE values for each plot vary only slightly throughout
the timesteps and for each regressor. The range of the
average RMSE values can be observed in Table 2. This
raises questions, as the inclusion of more data should
correlate with a decrease in RMSE, which is often not
observed. The stable RMSE graphs could be caused by
the particular method by which these CA models are up-
dated and could indicate that image features are not as
powerful as the authors hoped. These problems are ex-
plored in the limitations section below. Besides these po-
tential problems with the results, there are a few RMSE
graphs that are very promising. RMSE for Moonchai and
Precharattana were 0.0008 and 0.0006 for the state vec-
tor machine. González RMSE struggled in both the SV
and Tree regressors, sitting at around 15%. Moonchai
and Precharattana routinely have the lowest RMSE re-
gardless of regressor used, while González tends to have
the highest. Despite generally low RMSE, there is lit-
tle dependence on the RMSE when compared with t -
Bound. There were some spikes, but the trend for each
RMSE generally stays the same. This was unexpected
and suggests that the features used were not the most
informative. This implies that a better set of features
would benefit the model. Some class labels were consis-
tently low and their validity is questionable at best. The
only regressor-CA model combination that achieved ex-
pected results was the Rana model with the Tree regres-
sor. This suggests that the resulting ability of a regressor
to predict the end state of the model may be entirely de-
pendent on which model is being analyzed; essentially,
a new model might perform even better than the given
models in this research, but it could also perform worse,
especially if the model has a divergent end state (poten-
tially a model with two end states: one where a treat-
ment that is able to contain all HIV infection, and an-
other where the HIV completes its progression to AIDS).

Additionally, the factorial analysis revealed that blob
features detected by both libraries are particularly effec-
tive, especially in the context of the Rana model, where
they contributed to around a third of the RMSE score.
For the González model, many of the cell classes did
not have a dominating feature, suggesting that the im-
age features were either equally unsuccessful or equally
contributed to the model’s success. Based on the RMSE
graphs and the limitations discussed in the next section,
it is more likely that the features were rather unsuccess-
ful at predicting the end state of the model. This conclu-
sion also applies to the Moonchai model, which did not
have a driving feature for any of the target classes, and
the Precharattana model, which only had a minor driv-

ing factor of corner features for the dead cells. The dos
Santos model seemed to use the most number of feature
effectively, utilizing a combination of various blob and
contour features. Rarely though, did it utilize the corner
features. After looking at all five models and all four tar-
get classes, the blob features and contour features seem
more effective than the corner features. Within blob and
contour features, it appears that focusing on the larger
structure of the model with features that have higher ar-
eas and perimeters seemed to have a greater effect on the
RMSE than small features. This is understandable, as
for many models, smaller blobs can be detected in large
numbers given the almost randomized appearance of the
colors of the cells. Thus, smaller blobs would have much
less significance than the larger structure of a blob or
contour with an area of 100 or more.

The introduction of treatments at different stages re-
vealed an interesting phenomenon. In the Rana model,
the RMSE values were consistently lower for all target
classes than the original Rana model, by a magnitude
of almost 10 times a difference. This suggests that the
model is much more consistent when introducing the
treatment at earlier points in time, possibly hinting at
the treatment’s effectiveness. However, as described ear-
lier, the consistent RMSE scores are still troubling. In the
González model, more concerns were raised. Despite this
CA model originally introducing treatment at 300 weeks,
the RMSE scores for the treatment at t=2 and t=4 weeks
did not change. They both stuck in ranges of 10% - 20%
RMSE scores. This is concerning, as the authors’ previ-
ous hypothesis for the comparatively large RMSE scores
for the González model were that the dynamics of the
model when the image features were collected differed
from those at the end. This potentially highlights an ad-
ditional problem with performing image feature regres-
sion on the González model: the image features might be
detected within the structure of a model image, but they
do not appear to be a good method to determine the end
state of the model with accuracy. This is likely due to
the model’s complexity once more. However, though the
new treatment values did not change the RMSE scores
themselves, they changed the tendencies of the RMSE,
especially for treatment introduced at t=4. Of all of the
CA models viewed, this is the only model to see consis-
tent declines in RMSE with more inforamtion. Though
this model still maintains the highest RMSE scores, it
might be indicative of a different phenomenon: that po-
tentially, the Gonzĺez model is the only CA model for
which image features actually correlate with regression,
perhaps for its ruleset, and that this regressability can
be improved with a more correlated feature set. This is
by far the most promising result simply because it is the
only set of RMSE graphs that properly correlate with the
increase of information, which should be the case for all

25



of these CA model-regressor combinations should be do-
ing, though it is not.

5.3 Limitations

Despite measures being taken to improve upon the origi-
nal simulation process, there were a few limitations with
this proposed process. First, there are additional features
that may not have been explored. In this paper most fea-
tures were focused on finding blobs and their character-
istics. Some features relied on corners or edges, but these
were explored at a lower-level of complexity. Of the fea-
tures that were collected, some of the complex informa-
tion about these features were not investigated, such as
the orientation of corners or feature clustering. Addi-
tionally, the greyscale method we used to approach this
problem is potentially a misguided approach. The im-
ages could have been treated as boolean masks. In this
approach, each class of cell (Healthy, Dead, Infected A1,
A2) would be treated as an entirely discrete and unre-
lated class to the others, and multiple grids of boolean
values would be formed. For example, a boolean mask
for the healthy cells would include True if a particu-
lar cell were healthy, and False otherwise, making no
discrimination between non-healthy cells. This differs
from treating images as greyscale because of the rela-
tionship that two similar colors or two pixels in close
proximity have within a greyscale image. In a series of
boolean masks, such a relationship does not exist. It is
arguable that, given the nature of these CA models, the
color relationship between different classes of cells is not
equivalent to that of an actual greyscale image, and that
boolean masking is a better approach.

Second, another limitation comes in the form of treat-
ment initiation. Specifically, for the González model the
treatment process did not start until timestep 300. Fea-
tures were only extracted for timesteps up to 200. At
first, this model had as large as 15% error after regres-
sion, markedly higher than the other models, since the
González model did not have a chance to deploy its treat-
ment and garner independent and accurate results. Pre-
dicting the end state based on states where treatment
had not taken effect simply is not accurate. The authors
then decided to ignore the normal treatment procedure
within not only the González model, but all of the mod-
els we used. Previous research shows that treatment for
patients typically happens within a month after diagno-
sis, while patients possessing other conditions may ini-
tiate antiretroviral therapy after only two weeks [1]. As
noted in footnote 2, the authors chose to initiate treat-
ment on the models which included it at 2, 4, and 8
weeks given these previous conclusions. Choosing this
fixed time to start treatment on these models, however,
imposes yet another limitation. The initiation times of

treatment can potentially be affected by how well a pa-
tient feels. Patients that have CD4+ counts of above 500
cells per microliter tend to refuse treatment because they
feel well [5]. A promising fix for this would be to start the
treatment once the number of healthy cells falls behind
an optimal threshold.

This method does suggest an improvement over the
initial simulations, but is still not ideal. As previously
mentioned, there are combinations of features that have
not been explored in this procedure. Pooling together a
more robust set of diverse features including those out-
lined above along with edge and corner-focused features
could improve results. Using a larger span of values to
test the hyperparameters may indicate that some of these
parameters are viable to include in the regression. Dur-
ing model validation, implementing bins could allow for
use of stratified k-means to improve the model validation
scores.

Third, some of models, despite optimization, strug-
gled to scale to larger sizes when attempting to add the
various treatment procedures at 2, 4, and 8 weeks. In
particular, the 1200x1200 González model struggled to
implement treatment at 8 weeks. To understand why
this model did not finish where all others had, a run time
versus model timestep graph for each type of feature was
calculated, and can be seen in Figure 17 . The treatments
for t=2 have little variation in the amount of time they
take to calculate, which would indicate that the model
is relatively stable in its state. This is likely because the
HIV infection has not had enough time to fully infect the
body, and therefore the dynamics of the model are rela-
tively stagnant compared to later times such as t=4 and
t=8. At these two later times, the model is more ”active”
as more cells are involved in the simulation. Thus, more
complex structures appear and the image feature collec-
tion models must work harder to address, analyze, and
identify image features. For González in particular, fac-
torial analysis revealed that it relies more heavily on con-
tours than other features to reach its regression conclu-
sions. Thus, given the substantial spikes in run time that
contours with a treatment introduced at t=8 take on the
González model, it would then follow that the larger ver-
sion of this model would take longer than other models
to perform. Essentially, each CA model has its own dy-
namics which lead certain image features to drive regres-
sion more than others. Certain models might struggle to
scale up if given a rather complex ruleset and high vari-
ance within the model at a given timestep, which would
cause the most important features or feature sets to be-
come a bottleneck.

Fourth, another limitation could come in the form
of how the CA models are updated. The synchronous
method of updating the CA model could be leading to
perfectly regular patterns. As seen in previous research

26



0 50 100 150 200 250 300 350 400
Simulation Time (weeks)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ru
n 

Ti
m

e 
(s

ec
on

ds
)

Blob Features
treatment at t = 2
treatment at t = 4
treatment at t = 8

0 50 100 150 200 250 300 350 400
Simulation Time (weeks)

0

5

10

15

20

25

30

Ru
n 

Ti
m

e 
(s

ec
on

ds
)

Contour Features
treatment at t = 2
treatment at t = 4
treatment at t = 8

0 50 100 150 200 250 300 350 400
Simulation Time (weeks)

5.6

5.8

6.0

6.2

6.4

6.6

6.8

Ru
n 

Ti
m

e 
(s

ec
on

ds
)

Blob_Log Features
treatment at t = 2
treatment at t = 4
treatment at t = 8

0 50 100 150 200 250 300 350 400
Simulation Time (weeks)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Ru
n 

Ti
m

e 
(s

ec
on

ds
)

Corners Features
treatment at t = 2
treatment at t = 4
treatment at t = 8

Figure 17: Run time vs model timestep graphs for the González 1200x1200 CA model. This shows why the González
model in particular did not meet the specified time requirements that all other models met with ease. Special notice
must be given to the variance of each model at a given timestep and complexity of the ruleset as the models are scaled
up to larger sizes and more complex rulesets.

by Schönfisch and de Roos, the method by which a CA
model is updated can drastically impact the outcomes of
the a simulation model[27], and can lead to contradic-
tory conclusions as seen in the case of Huberman and
Glance’s prisoner dilemma model of 1990[13]. In Hu-
berman and Glance’s model, a coexistence between de-
fecting and compliant prisoners continued indefinitely.
Schönfisch and de Roos found that, with asynchronous
updating of Huberman and Glance’s model lead to an
entirely different conclusion: a completely defecting
population of prisoners. Thus, these regular patterns
might be artifacts of the synchronous updating known as
anisotropic fronts[26]. A remedy to anisotropic fronts is to
update the grid asynchronously in a randomized fashion
[19].

Fifth and finally, these stable RMSE rates could be in-
dicative of the overall utility, or lack thereof, of image
features in predicting model end states. To compare, the
authors performed similarly structured regression tasks
utilizing only the cell counts of each class of cell at each

given timestep in place of image features. The resulting
data (Found in Figures 12 ,19 , 20 , and 21 ) indicates
that image features may not be as informative as they
were thought to be initially. In all cases, there was only a
marginal shift (if any) in the trend and values of the av-
erage RMSE score. There are some additional avenues to
explore before definitively deciding that these image fea-
tures are not suitable in predicting end-states. Primarily,
it would be revealing to attempt feature extraction on a
set of non-convergent models. As it stands now, however,
image features had little to no bearing on the outcome of
the RMSE.

6 Conclusion

We investigated the possibility of predicting the preva-
lence of HIV 10 years after initial infections, based on
image features extracted from simulated snapshots of the
host’s lymphatic tissue at various stages of the infection

27



Figure 18: Average RMSE of the gaussian process regressor for data from each CA model after a 10-fold cross val-
idation. The y axis plots the percentages in decimal, i.e. 0.01 means 1% (of total cells count). The x axis plots the
maximum t up to which image features were considered by the regressor.

using different CA models. Given the comparison drawn
between using only cell counts of the various cell types
and our attempts to use image features, little to no differ-
ence was found. As a result, we cannot conclude that the
image features were of any particular utility. There are
additional avenues left to explore before this approach
can be rejected, such as the usage of boolean masks, elim-
inating anistropic fronts, and engaging with new image
features. Of all the models tests, the only affirmative
connection drawn between image features and lowered
RMSE scores was in the a specific treatment version of
the González model. This provides some hope for this
approach, as we can additionally conclude that the scope
of utility for these image feature regressors is highly
dependent on the CA model and its specific dynamics
and ruleset. Therefore, future work should comprehen-
sively examine image features that are more closely tied
to the underlying biological processes or generated with
a smaller cutoff, as well as improve how the CA models

update in the hopes of finding a more widely applica-
ble approach to using image features to predict the end
states of the model.

Libraries Used

The Python libraries used in this project are listed below
and cited in references.

• Scikit-Learn [23].

• Scikit-Image [28].

• OpenCV [2].

• Matplotlib [14].

• Numba [16].

• Numpy [17].

28



Figure 19: Average RMSE of the lasso regressor for data from each CA model after a 10-fold cross validation. The y
axis plots the percentages in decimal, i.e. 0.01 means 1% (of total cells count). The x axis plots the maximum t up to
which cell counts were considered by the regressor.

References

[1] François-Xavier Blanc, Thim Sok, Didier Laureil-
lard, Laurence Borand, Claire Rekacewicz, Eric
Nerrienet, Yoann Madec, Olivier Marcy, Sarin Chan,
Narom Prak, and et al. Earlier versus later start
of antiretroviral therapy in hiv-infected adults with
tuberculosis. The New England Journal of Medicine,
365(16):1471–1481, Oct 2011.

[2] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal
of Software Tools, 2000.

[3] CDC. HIV/AIDS. https://www.who.int/news-

room/fact-sheets/detail/hiv-aids.

[4] CDC. CDC - About HIV/AIDS. https://www.cdc.
gov/hiv/basics/whatishiv.html, Dec 2019.

[5] Jan Fehr, Dunja Nicca, Jean-Christophe Goffard,
David Haerry, Michael Schlag, Vasileios Papasta-

mopoulos, Andy Hoepelman, Athanasius Skoutelis,
Ruth Diazaraque, and Bruno Ledergerber. Rea-
sons for not starting antiretroviral therapy in hiv-
1-infected individuals: a changing landscape. In-
fection, 44(4):521–529, Mar 2016.

[6] Andrew Fisher, Bhisma Adhikari, Chao Zhai, and
Joshua Morgan. Predicting the resource needs and
outcomes of computationally intensive biological
simulations. 2019.

[7] Philippe J. Giabbanelli, Jared A. Kohrt, and
Joshua A. Devita. Optimizating Discrete Simula-
tions of the Spread of HIV-1 to Handle Billions of
Cells on a Workstation. Unpublished.

[8] Ramon Gonzalez, Sergio Coutinho, Rita
Zorzenon dos Santos, and Pedro Figueirêdo.
Dynamics of the hiv infection under antiretroviral
therapy: A cellular automata approach. Phys-

29

https://www.who.int/news-room/fact-sheets/detail/hiv-aids
https://www.who.int/news-room/fact-sheets/detail/hiv-aids
https://www.cdc.gov/hiv/basics/whatishiv.html
https://www.cdc.gov/hiv/basics/whatishiv.html


Figure 20: Average RMSE of the support vector machine regressor for data from each CA model after a 10-fold cross
validation. The y axis plots the percentages in decimal, i.e. 0.01 means 1% (of total cells count). The x axis plots the
maximum t up to which cell counts were considered by the regressor.

ica A Statistical Mechanics and its Applications,
392:4701–4716, 10 2013.

[9] Aurélien Géron. Hands-on machine learning with
Scikit-Learn and TensorFlow: concepts, tools, and tech-
niques to build intelligent systems. O’reilly Media,
2017.

[10] Jochen Görtler, Rebecca Kehlbeck, and Oliver
Deussen. A visual exploration of gaussian pro-
cesses. Distill, 4(4):e17, Apr 2019.

[11] Mark D Halling-Brown, David S Moss, and Adrian J
Shepherd. Towards a lightweight generic computa-
tional grid framework for biological research. BMC
Bioinformatics, 9:407, Oct 2008.

[12] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen
Lin. A practical guide to support vector classifica-
tion, 2003.

[13] B. A. Huberman and N. S. Glance. Evolutionary
games and computer simulations. 90:7716–7718,
Aug 1993.

[14] J. D. Hunter. Matplotlib: A 2d graphics environ-
ment. Computing in Science & Engineering, 9(3):90–
95, 2007.

[15] J. Kougias, Ch. F.and Schulte. Simulating the im-
mune response to the HIV-1 virus with cellular au-
tomata. Journal of Statistical Physics, 60(1):263–273,
Jul 1990.

[16] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert.
Numba: A llvm-based python jit compiler. In Pro-
ceedings of the Second Workshop on the LLVM Com-
piler Infrastructure in HPC, LLVM ’15, New York,
NY, USA, 2015. Association for Computing Machin-
ery.

30



Figure 21: Average RMSE of the decision tree regressor for data from each CA model after a 10-fold cross validation.
The y axis plots the percentages in decimal, i.e. 0.01 means 1% (of total cells count). The x axis plots the maximum t
up to which cell counts were considered by the regressor.

[17] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert.
Numba: A llvm-based python jit compiler. In Pro-
ceedings of the Second Workshop on the LLVM Com-
piler Infrastructure in HPC, LLVM ’15, New York,
NY, USA, 2015. Association for Computing Machin-
ery.

[18] Brendan Maughan-Brown, Philip Smith, Caroline
Kuo, Abigail Harrison, Mark N. Lurie, Linda-Gail
Bekker, and Omar Galárraga. Readiness for an-
tiretroviral therapy: Implications for linking hiv-
infected individuals to care and treatment. AIDS
and Behavior, 22(3):691–700, Jul 2017.

[19] John Metzcar, Yafei Wang, Randy Heiland, and Paul
Macklin. A review of cell-based computational
modeling in cancer biology. JCO Clinical Cancer In-
formatics, (3):1–13, Feb 2019.

[20] Sompop Moonchai and Yongwimon Lenbury. Inves-
tigating combined drug and plasma apheresis ther-

apy of hiv infection by double compartment cellular
automata simulation. International Journal of Com-
puter Theory and Engineering, 8:190–197, 06 2016.

[21] NIH. Acquired immunodeficiency syn-
drome (AIDS). https://aidsinfo.nih.

gov/understanding-hiv-aids/glossary/3/

acquired-immunodeficiency-syndrome, 2019.

[22] U.S. Department of Health and Human Ser-
vices. HIV treatment overview. https:

//www.hiv.gov/hiv-basics/staying-in-hiv-

care/hiv-treatment/hiv-treatment-overview,
Apr 2019.

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, B. Michel,
V.and Thirion, O. Grisel, M. Blondel, R. Pretten-
hofer, P.and Weiss, V. Dubourg, J. Vanderplas,
D. Passos, A. andCournapeau, M. Brucher, M. Per-
rot, and E. Duchesnay. Scikit-learn: Machine learn-

31

https://aidsinfo.nih.gov/understanding-hiv-aids/glossary/3/acquired-immunodeficiency-syndrome
https://aidsinfo.nih.gov/understanding-hiv-aids/glossary/3/acquired-immunodeficiency-syndrome
https://aidsinfo.nih.gov/understanding-hiv-aids/glossary/3/acquired-immunodeficiency-syndrome
https://www.hiv.gov/hiv-basics/staying-in-hiv-care/hiv-treatment/hiv-treatment-overview
https://www.hiv.gov/hiv-basics/staying-in-hiv-care/hiv-treatment/hiv-treatment-overview
https://www.hiv.gov/hiv-basics/staying-in-hiv-care/hiv-treatment/hiv-treatment-overview


ing in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[24] Monamorn Precharattana, Wannapong Triampo,
C. Modchang, and Yongwimon Lenbury. Investiga-
tion of spatial pattern formation involving CD4+ T
cells in HIV/AIDS dynamics by a stochastic cellu-
lar automata model. International Journal of Math-
ematics and Computers in Simulation, 4:135–143, 01
2010.

[25] Ela Rana, Philippe J. Giabbanelli, Naga H. Balab-
hadrapathruni, Xiaoyu Li, and Vijay K. Mago. Ex-
ploring the relationship between adherence to treat-
ment and viral load through a new discrete sim-
ulation model of hiv infectivity. In Proceedings of
the 3rd ACM SIGSIM Conference on Principles of Ad-
vanced Discrete Simulation, SIGSIM PADS ’15, page
145–156, New York, NY, USA, 2015. Association for
Computing Machinery.

[26] Birgitt Schönfisch. Propagation of fronts in cel-
lular automata. Physica D: Nonlinear Phenomena,
80(4):433–450, Feb 1995.

[27] Birgitt Schönfisch and André de Roos. Synchronous
and asynchronous updating in cellular automata.
Biosystems, 51(3):123–143, Sep 1999.

[28] Stéfan van der Walt, Johannes L. Schönberger,
Juan Nunez-Iglesias, François Boulogne, Joshua D.
Warner, Neil Yager, Emmanuelle Gouillart, Tony
Yu, and the scikit-image contributors. scikit-image:
image processing in Python. PeerJ, 2:e453, 6 2014.

[29] Rita Maria Zorzenon dos Santos and Sérgio
Coutinho. Dynamics of hiv infection: A cellular au-
tomata approach. Phys. Rev. Lett., 87:168102, Sep
2001.

32


	Introduction
	Background
	HIV and Acquired Immunodeficiency Syndrome (AIDS)
	HIV Modeling using Cellular Automata
	Image Feature Extraction
	Regressors

	Methods
	Implementations of HIV CA Models
	Image Feature Collection
	Regression

	Results
	Feature Extraction
	Regression Plots
	Parameter Tuning
	Support Vector Machine
	Gaussian Process
	Lasso
	Decision Tree

	Special Treatment Introductions
	Treatment at 2 Weeks
	Treatment at 4 Weeks
	Treatment at 8 Weeks


	Discussion
	Present Work
	Implications of Results
	Limitations

	Conclusion

